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Abstract

In this paper, we address the task of instance-level se-
mantic boundary detection. To this end, we generate a large
database consisting of more than 10k images (which is 20x
bigger than existing edge detection databases) along with
ground truth boundaries between 459 semantic classes in-
cluding instances from both foreground objects and differ-
ent types of background, and call it the PASCAL Bound-
aries dataset. This is a timely introduction of the dataset
since results on the existing standard dataset for measuring
edge detection performance, i.e. BSDS500, have started to
saturate. In addition to generating a new dataset, we pro-
pose a deep network-based multi-scale semantic boundary
detector and name it Multi-scale Deep Semantic Bound-
ary Detector (M-DSBD). We evaluate M-DSBD on PASCAL
boundaries and compare it to baselines. We test the transfer
capabilities of our model by evaluating on MS-COCO and
BSDS500 and show that our model transfers well.

1. Introduction

Edge detection has been a fundamental problem in com-
puter vision since the 1970°s [12]. It is helpful for many
vision tasks, e.g., object detection [31], image segmentation
[1], among others. Successful methods include the Canny
edge detector [5], gPb [1], and Structured Edges (SE) [9].
More recently, edge detection has been addressed by deep
networks, e.g., HED [30].

Edge detection datasets, such as the BSDS300 [23] and
BSDS500[1], helped improve the state of the art. But re-
sults on these datasets have started to plateau and may have
achieved the upper bound[16]. Also, with a total of only
500 images, BSDS500 is a fairly small dataset by modern
standards which restricts the class of deep networks that can
be trained on it. A goal of this paper is to develop a multi-
scale deep network architecture for edge detection which
motivates introducing a larger-scale annotated dataset.

In this paper we choose to target a specific type of edge,

Figure 1: This figure shows the differences between edge an-
notations from the BSDS500 (top row) and the PASCAL Bound-
ary annotations (bottom row). BSDS500 has multiple annotations
that differ with each other. The PASCAL Boundaries annotations
are restricted to the highest level of edge granularity, i.e., instance
boundaries, providing a single consistent annotation.

namely instance-level semantic boundaries. We make this
choice because edge detection is difficult to define due to the
many types of edges arising from different levels of granu-
larity; 1) the exterior boundaries of objects, which divide the
image into different object instances (car, road, tree, etc.),
ii) interior boundaries dividing an object into its constituent
parts (head, neck, torso, etc.), or iii) non-semantic contours
arising from texture (stripes on a tiger) or artificial design
(writings on clothes). BSDS addressed this difficulty by
assigning several labelers to segment each image as they
wished, resulting in annotations which could be combined.
In many cases the annotations were consistent, but some-
times there were differences [15]. In this work, we restrict
ourselves to the coarsest level of edge granularity, i.e., se-
mantic instance-level object boundaries, since we consider
it to be the most important and least ambiguous edge cate-
gory. Figure 1 shows an example BSDS image with its edge



annotations (top row) and an example image from PASCAL
Boundaries along with its semantic instance-level boundary
annotations (bottom row).

To design PASCAL Boundaries we build on PASCAL
Context [25] by providing new large-scale instance-level
boundary annotations between 459 semantic classes (in-
cluding both foreground objects and different types of back-
ground). PASCAL Context did not include instance-level
labels. In addition, annotators cleaned up the boundaries
of PASCAL Context. PASCAL Boundaries differs from
other instance-level segmentation datasets like SBD [13]
and MS-COCO [21] because it gives boundary annota-
tions on a significantly large number of object categories
(459), while SBD and MS-COCO restrict their annotations
to only 20 and 80 foreground categories, respectively. With
these additional labels in the background classes and other
foreground objects, PASCAL Boundaries provides twice as
many boundary annotations as the SBD dataset.

In addition to building the dataset, we design a deep
network-based class-agnostic boundary detector, motivated
by the HED architecture [30]. We make some notable
changes to the HED architecture by introducing a multi-
scale processing pipeline and train each layer in the deep
network using a greedy layer-wise approach with deep su-
pervision [19]. We test our model on the PASCAL Bound-
aries dataset and show that it outperforms well-known edge
detectors such as Structured Edges [9] and HED [30]. We
also perform experiments on the BSDS500 and MS-COCO
datasets to show our model’s transfer capability.

The contributions of this paper are as follows. i) We
provide instance-level boundary annotations on over 10k
images from PASCAL VOC2010 to serve as a testbed for
boundary detection algorithms.!. ii) We propose a multi-
scale deep network-based class-agnostic semantic boundary
detector (M-DSBD) to solve the boundary detection task,
which is described in detail in Section 4.

2. Related Work

One of the first databases for edge detection was the
Sowerby database [4], which consisted of 100 color im-
ages from the streets of Sowerby. At about the same time,
there was the South Florida dataset [4], which was simpler
than the Sowerby dataset, and consisted of 50 gray scale
images. These datasets enabled the identification of the fact
that low-level filtering techniques such as the Canny edge
detector [5] were limited in many ways. Moreover, the first
real statistical techniques for edge detection [17] [18] were
developed and tested on these datasets.

The small size of Sowerby motivated Martin et al. [23]
to start creating a public dataset of image segmentations. A
set of 300 images from this dataset was then used in [24]
and came to be known as the BSDS300 dataset. More re-

I'The annotations can be found at http://ccvl.jhu.edu/datasets/

cently, the BSDS300 dataset was extended to incorporate
200 additional images and the superset dataset was named
as the BSDS500 dataset [1].

The existence of BSDS has helped calibrate novel edge
detectors such as the gPb-edge detector [1], Sketch Tokens
[20], SE [9] and, HED [30]. Deep net edge detection meth-
ods, such as the N4-network [7], Deep Edge [3], Deep Con-
tour [27] and HED [30], have shown significant improve-
ments in terms of the F-measure on the BSDS dataset. But
the limited size of BSDS may lead to saturation [16]. The
BSDS datasets do not distinguish between different levels
of edge granularities.

There are other works that have also restricted them-
selves to defining boundaries at a single level of granu-
larity. Endres and Hoiem [10] cleaned up the BSDS300
dataset by grouping multiple segments within an object
into a single object instance. PASCAL VOC2010 chal-
lenge [11] provided instance-level segmentations of 20 ob-
ject categories in ~ 2.2k images. Hariharan et al. [13] ex-
tended the instance-level annotations for the 20 PASCAL
object categories to include ~ 10k images corresponding
to the trainval set of the PASCAL VOC2010 challenge
to produce the SBD dataset. A more recent dataset that
includes instance-level segments is the MS-COCO dataset
[21], which contains instance-level masks for 80 object cat-
egories and is much larger than the PASCAL dataset. But
all these datasets label instance-level masks only on a re-
stricted set of foreground objects (20 or 80 categories). This
makes it difficult to evaluate the boundaries detected be-
tween various background categories (recall that we have
twice as many annotations as SBD). The NYU dataset [26]
provides an answer to this problem by labeling every pixel
in an image on ~1.5k images. But all the images in this
dataset are indoor scenes and thus cannot capture the varia-
tions in real-world (indoor and outdoor) scenes.

3. Dataset Description

We propose a new dataset for the boundary detection task
and call it PASCAL Boundaries. PASCAL Boundaries re-
stricts the labels to be only those edges that separate one ob-
ject instance from another object instance of the same class,
or another object instance from a different class, or, from a
background type.

3.1. Dataset contributions

We use PASCAL Context [25] as a starting point to build
the dataset. The PASCAL Context annotations were ob-
tained by asking the labelers to label all the pixels belonging
to the same object category (without sub-pixel precision).
It goes beyond the original PASCAL semantic segmenta-
tion task by providing annotations for the whole scene. The
images are obtained from the PASCAL VOC2010 chal-
lenge. We make two significant modifications to the PAS-
CAL Context annotations.



1. Instance-level Boundaries: We hired annotators to ex-
tend the category-level mask annotations to instance-level
mask annotations for all the 459 categories identified in
PASCAL Context. For certain difficult and ambiguous
cases, e.g. two trees next to each other, we separate them
into different instances if they are well-separated in the im-
age. If not, they remain grouped into a single mask. An
example of the differences between PASCAL Context and
PASCAL Boundaries is shown in Figures 2c and 2d. Other
instance-level annotation datasets (SBD and COCO) label
only a restricted set of foreground object categories (20 and
80, resp.) and do not label any of the background categories.
PASCAL Boundaries dataset has twice as many boundary
annotations as the SBD dataset (1.45% vs. 0.77% of the
pixels), which shows the importance of labeling boundaries
between background categories. Figures 2b and 2d clearly
reveal the richness of the annotations in PASCAL Bound-
aries masks in comparison to the annotations in SBD.

2. Higher-precision boundaries: The precision and qual-
ity of the boundaries provided by category-level masks in
the semantic segmentation datasets (e.g. MSRC, LabelMe
etc.), though good enough for semantic segmentation tasks,
are usually not satisfactory for the more high-precision
boundary detection task. Although PASCAL Context has
higher quality masks, some of them needed to be cleaned
up. Therefore, we hired annotators to fix the masks at the
boundaries of the PASCAL Context dataset that we deemed
were not satisfactory for boundary detection.

Mask2Boundaries: The boundary annotations were then
obtained by an automatic post-processing of the improved
PASCAL Context mask annotations. The boundaries would
ideally be of zero-pixel width: right between the object in-
stances. In practice, we label the boundaries of both ob-
jects, which produces two-pixel wide boundary annotations.
This can be useful for some setups, but in our experiments
we thinned them using morphological operations to have
boundaries of one pixel width. We do not use sub-pixel
precision in our annotations because we found that annotat-
ing at such levels of precision was be beyond the abilities
of human annotators. Rows 1 and 3 in Fig. 5 shows mul-
tiple examples of image-boundary pairs. Row 1 contains
the original images, row 3 is the class-agnostic semantic
boundary map that we obtain from the improved PASCAL
Context annotations (shown in row 2).

Dataset Statistics and Characteristics: PASCAL Bound-
aries has images of 360496 pixels on average, from which
an average of 1.45% of pixels are annotated as boundaries.
This is in comparison to the SBD dataset [13], which has
only 0.77% of pixels labeled as boundaries. This clearly
shows that labeling the boundaries of only the foreground
objects ignores at least 50% of all the existing boundaries in
an image. The percentage of pixels labeled as boundary in
the PASCAL Boundaries dataset, however, is slightly lower

than the 1.81% of pixels annotated as edges in BSDS500,
on images of 321x481 pixels size. This is understandable
since the BSDS annotations consisted of edges from differ-
ent levels of granularity (e.g. the interiors of objects). This
number drops to 0.91% if we consider only those pixels of
the BSDS500 annotations that were labeled by all the an-
notators annotating the image. Fig. 3 shows the top 45
category pairs that contribute to the boundaries in the PAS-
CAL Boundaries dataset. We can see that the top 7 con-
tributors are because of the additional annotations that we
provide (e.g. ground/sky), which didn’t exist in the original
20 PASCAL object categories.

Many of the images in this dataset are non-iconic, which
means they contain multiple objects, not necessarily biased
towards “photography images” (one salient object in the
center with high contrast with respect to the background).
Minimizing the bias towards “photography images” is ben-
eficial for computer vision applications that need to work in
the real world. We also emphasize that the number of im-
ages in the PASCAL Boundaries dataset (~ 10k) is much
larger than in existing edge detection datasets. The in-
creased scale of this dataset provides more variation in the
boundary types and is beneficial for learning deep models.
Moreover, testing algorithms on thousands of images, as op-
posed to testing them on a couple hundred images, will pro-
vide more credibility to future boundary detection models.
Dataset Split: We split the dataset into three parts; train,
val and test. The PASCAL Boundaries test set con-
sists of the same images as in the val set of PASCAL Con-
text dataset; 5105 images. The val set consists of 500 im-
ages from PASCAL Context’s train set, and the train
set consists of the rest of the images from the PASCAL Con-
text’s train set.

4. M-DSBD

To complement the PASCAL Boundaries database, we
propose a multi-scale deep network-based semantic bound-
ary detector (M-DSBD). As an overview, our network takes
an RGB image as input and outputs a prediction map that
provides the confidence for the presence of a class-agnostic
object boundary at each pixel location. We build upon the
HED architecture and use the publicly released code of fully
convolutional network (FCN) architecture [22].

Our network architecture is shown in Figure 4. M-DSBD
works on multiple scales of input images, which is a com-
mon practice in many computer vision algorithms. Since
the objects in our images occur at different scales, we try to
provide invariance to it by explicitly detecting object bound-
aries at various scales during both the training and testing
phases. Note that this is different from HED [30], where
the authors use multi-scale only while training the network.
Combining the predictions from multiple scales of the same
image allows the deep network model to be scale-invariant,
thus leading to a more robust boundary detector (also cor-



(a) Original Image (b) SBD [13]

(c) PASCAL Context [25] (d) PASCAL Boundaries Masks

Figure 2: (a) Shows an example image. (b) Shows the instance-level mask from SBD [13]. (c) Shows the category-level masks from
PASCAL Context [25]. (d) Shows the instance-level masks in PASCAL Boundaries, which is significantly richer than the annotations in
SBD. The yellow ovals (displayed only for illustration) show example regions where instance-level annotations were introduced in the
PASCAL Boundaries dataset over PASCAL Context’s category-level masks.
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Figure 3: Longest boundaries classified by the pairs of categories
which the boundary separates. Only the top 45 out of 105,111
possible combinations are shown.

roborated by the results from our experiments).
More formally, for a given image, x, the network
rescales it to multiple scales, S € {1,2,...,|S|}, to pro-

duce an image pyramid, {x® }L‘S:ll Our network acts on each
rescaled image in this image pyramid, x°, and outputs a
class-agnostic boundary map for each scale, y°(= o(y3)).
The final boundary prediction, y, involves taking a linear

combination of the scale-specific boundary prediction acti-

vations, ¥ as y (i) = O'(Z‘Sill w..1.Y5 (7). Here, i is used

to index the pixel locations in the image and w?,,;. is the
linear combination weight associated with scale s, which
can be vectorized and written as Wcqe, and o(.) is used to
denote the sigmoid function that maps the boundary predic-
tion activations into the range [0, 1].

Each scale-specific boundary prediction, ¥°, is obtained
by passing the rescaled image, x°, though a series of con-
volutional layers, rectified linear unit (ReLU) layers, and
max-pooling layers. We use CNN(x®; Wygse, WS, ;) tO
denote the processing done on the rescaled image, x°, by
a convolutional neural network parameterized by two sets
of weights, Wy, and w?,,_, to produce the scale-specific
boundary map, §° = CNN(x°; Wygse, W3, ). Note that
W ase is independent of the scale of the image and is shared
across all image scales, and w?, ;. denotes the scale-specific
weights. We will explain both these weights in more detail.

Recently, various works have shown that a boost in per-
formance is achievable by using features from the inter-
mediate layers of the deep network [30][22][14][6]. M-
DSBD also uses features from the intermediate layers of

the base network, which we combine using a linear com-
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Figure 4: This figure shows our multi-scale deep network archi-
tecture. The base network weights are shared across all scales.
The figure only shows two side-output connections, while in prac-
tice, the multi-scale fusion layer fuses the predictions from three
different scales.

bination to produce a scale-specific boundary prediction
map. Let, £(5*) (i) € R (dj, is the number of convolu-
tional filters in layer k) denote the feature vector at a spa-
tial location, i, obtained from an intermediate layer, &, and,
let the subset of the weights of the base network (W)
that are used to produce the features, f (%) be denoted as

WEE  We fuse these features into a 1-channel feature

map, fs (’ilz), which can be extracted at the side of each in-

termediate layer, k, using a 1 x 1 convolution kernel, i.e.,
fs(fdi)(z) = w}i}ft)—rf(s’k) (4), where, fs(fdlz)(z) € Ris the 1-
d feature at the spatial location, ¢, and w;ifg are the linear
weights used to combine the intermediate layer features.
Due to the max-pooling layers, the spatial resolution
of the side-output features, fs (ﬁ), will not be the same as
the spatial resolution of the image, x°. So, we upsam-
ple the side-output features, using a deconvolution layer
with an appropriately sized kernel, wi(fp’k), before tak-

ing a linear combination of these side output features to



produce the scale-specific boundary prediction activation,

Age K s,k) p(s,k . s,k

Ya(z) = Zk:l w;usif((sidz,up) (Z) Here, f((side)‘,up) =
(s,k)

UP(fS(fJZ);WSL‘;’k)) is the upsampled feature map, Wy,

are the weights corresponding to the interpolation kernel,

and wgfug € R is the weight associated with the k-th
layer side output for performing the linear fusion. We
combine all linear fusion weights into a vector notation,
w;use € RX, where K is the total number of layers
in the deep network. We concatenate all the side-output
weights and denote the concatenated vector as w;,;, =
([ i TE L (W]l where [/ is used to
denote the concatenation of the layer-specific weights.

We initialize the base network weights, Wy, s¢, from the
five convolutional layers of the VGG16 network [28], which
was pretrained on the ImageNet database. We encourage
the reader to refer to [28] for the architecture of the base net-
work. From our experiments, we found that augmenting the
VGG16 convolutional weights, with an additional convo-
lutional layer (conv5_4), improved the performance of the
boundary detection task. Therefore, our base network archi-
tecture consists of the original convolutional layers from the
VGG16 architecture and an additional convolutional layer,
conv5_4, which consists of 512 filters of size 3 x 3. The
weights for this new conv5_4 layer were initialized ran-
domly by drawing from a Gaussian distribution.

4.1. Training Procedure

We now describe the training procedure that was em-
ployed to train the weights in our deep network. As men-
tioned above, we build on the Fully Convolutional Net-
work architecture, which allows us to backpropagate the
gradients computed at each pixel location. Our train-
ing set consists of the image-boundary label pairs, D =
{(x1,¥1), (x2,¥2), -, (XD|, ¥|p|) }» Where x;’s are the im-
ages and y;’s are the boundary labels. We employ batch-
stochastic gradient descent to update the initialized weights.
We use a class-balanced cross-entropy loss,

Aly,::W)==8 >

je{ily(i)=1}

—(1=-p) >

je{ily(i)=0}

log P(y(7) = 1/x; W)

log P(y(j) = 0|x; W),

as the loss function. Here, y is the groundtruth label map,

y is the predicted label map, W are the weights used to
make the prediction, ¥, and 3 is the class-balancing weight,
which is fixed to 0.9 in all our experiments. Class-balancing
is needed because of the severe imbalance in between the
number of boundary pixels and non-boundary pixels.

We make use of a layer-by-layer deep supervision [19] to
warm-start the training procedure. We greedily update the
weights [2] in each layer by backpropagating the gradients
from a side-output loss, Ay (y, y"; W (A k)), Which is com-
puted between the ground truth boundary map, y, and the

side output, y*(= g(f((;fsz up))), obtained from the inter-
mediate features out of layer k using the weights W A 1y =

R )

base’ quse’ up
sion procedure uses a side-output loss, Ax(y,y*), to up-
date only the weights corresponding to that layer. The
weights of all other layers are not changed. For example,
while backpropagating from Ay (y,y*), only the weights,

. The layer-by-layer deep supervi-

(WE .. wgfu]:;, wg‘;k)] are updated; WF _ corresponds to
the weights in the k-th layer of the base network. The rest
of the weights are untouched. We sequentially update the
weights in each layer starting from layer 1 upto layer K.
Once the weights have been fine-tuned using our greedy
layer-by-layer update procedure, we switch off the side-
output losses and finetune the network using a scale-
specific boundary detection loss, A (y,y*; W (a 5)) Where
Was) = [Whase, WS4, This is different from the train-
ing procedure in [30], where the authors employ deep super-
vision and force each side-output prediction to be a bound-
ary map. We, on the other hand, only use deep supervi-
sion to warm-start the training procedure and switch off the
gradients from the side-output loss while updating the fu-
sion weights. In other words, we do not enforce each side
output to correspond to a boundary prediction map, but use
these side outputs as features for the scale-specific boundary
map. Enforcing each side output to be a boundary predic-
tor of its own right prevents the fusion layer from providing
the best performance. Allowing the side outputs to only act
as features for the fusion layer, by switching off the gradi-
ents from the side-output loss, enables a layer’s features to
be complementary to other layers’ features, thus permitting
the fusion weights to extract the best possible performance.
We are now left with the task to learn the optimal weights
to fuse the various scale-specific predictions. To this end,
we use the final boundary detection loss, Ay(y,y; Wa b)),
where Wa = [Waase, [WSiae]'2 ), Wecare]. In this final
stage of learning, we switched off the gradients from the
side-output and scale-specific losses, and backpropagated
the gradients only from the boundary detection loss. The
base network weights Wy, s. were not updated during this

final stage; only [w? ]‘S|

5 de)aq and Wcqze Were updated.

5. Experiments

We perform experiments on three datasets; PASCAL
Boundaries, BSDS500 and MS-COCO. We train our deep
network on the t rain set of PASCAL Boundaries dataset.
Hyperparameters, like the number of iterations, (3, etc.,
were tuned on the PASCAL Boundaries val set. For the ex-
periments on BSDS500 and MS-COCO, we used the model
that was trained on PASCAL Boundaries train set and
show its transfer capabilities on the test set of the respec-
tive datasets.

Implementation details: We used the publicly available
FCN code [22], which is built on top of the Caffe frame-



work to train our deep network. Weight updates were per-
formed using batch-SGD with a batch size of 5 images. To
enable batch training on a GPU, we resized all images from
the train set to a standard resolution of 400 x 400. The
learning rate was fixed to le-7, and weight decay was set
to 0.0002. We did not augment our training data since the
PASCAL Boundaries dataset t rain set has ~ 4500 train-
ing images?.

Evaluation Criterion: The standard evaluation criterion
for evaluating edge detection algorithms is the F-score. We
also use the same evaluation criterion for evaluating our
boundary detector. In addition, we provide baselines on the
new dataset using two other well-known edge detection al-
gorithms; SE [9] and HED [30]. We use the helper evalua-
tion functions provided in the SE Detection Toolbox [8] to
obtain all the numbers we report in this paper.

5.1. Baselines

Transfer from Edge Detection: We tested the baseline
edge detection methods, SE [9] and HED [30] that were
trained on BSDS, on the 5105 images present in the test
set of PASCAL Boundaries. The precision/recall curves are
shown in Fig. 6 and the plots are labeled as SE-BSDS and
HED-BSDS, respectively. We see that both SE-BSDS and
HED-BSDS transfer reasonably on to the PASCAL Bound-
aries dataset; SE-BSDS achieves an F-score of 0.541, while
HED-BSDS achieves an F-score of 0.553. The ranking or-
der of SE’s and HED’s performance when tested on the
BSDS500 dataset also transfers over when tested on the
PASCAL Boundaries dataset. This shows that BSDS500
edges are not entirely different from our definition of seg-
ment boundaries. The BSDS500 boundaries constitute
object-level boundaries, object part-level boundaries, and
boundaries emanating from texture. Our database, in com-
parison, deals only with object-level boundaries.
Retraining HED on PASCAL Boundaries: To provide a
fair comparison to M-DSBD, we retrained HED using their
publicly-released training code. We retained all the parame-
ters that were set by the authors. We only replaced the train-
ing set from the BSDS500’s augmented training set (which
HED uses) to PASCAL Boundaries’ t rain set. To account
for an increase in the complexity of the PASCAL Bound-
aries dataset, we allowed the training to continue until the
results started to plateau, which is ~20k iterations. HED,
when trained on the PASCAL Boundaries dataset, yields an
F-score of 0.60. This plot is labeled as HED-PB in Fig. 6.

5.2. Accretion Study and (M-)DSBD Results

We present our results in a step-by-step modular fashion
to show the improvements that the respective components
in our model provide.

2Source code can be found at https://github.com/VittalP/M-DSBD

Training Strategy: To test our training strategy, we re-
placed HED’s training method with a greedy layer-by-layer
training strategy to warm-start the training process. We
then used these updated weights as an initialization to fine-
tune the HED architecture by backpropagating the gradients
from the losses computed at each of the five side-output pre-
dictions and the fusion layer prediction, simultaneously, as
was done in [30]. This approach of training HED provided
similar results to HED-PB, yielding an F-score of 0.598.
However, this result was obtained in just 5k iterations (3k
for greedy layer-wise pretraining + 2k for finetuning). Since
this method uses the HED architecture but a different train-
ing strategy (i.e., the greedy layer-wise pretraining), we use
the term ‘HED-arch-greedy’ to indicate this model.

More Convolutional Layers: Since the PASCAL Bound-
aries dataset is more complex than the BSDS dataset, we ex-
perimented with adding more layers to the models so that it
could capture the dataset’s complexity. We began by adding
an additional convolution layer, conv5_4. We built the
layer conv5_4 with 512 filters, each with a kernel size of
3 x 3. We also added a ReLU layer to rectify the output
of conv5_4. This enhanced architecture was able to fur-
ther improve the results by 3% over the previous model by
producing an F-score of 0.62 on the test set. We experi-
mented with adding more layers to the network, but found
that they did not improve the performance of the model. We
use the term ‘HED-arch+conv5_4-greedy’ for this model.
Switching deep supervision off: An interesting out-
come was observed when we used deep supervision just
to warm-start the training process. Upon completion of
the greedy layer-by-layer training process, we switched
off the backpropagation of the gradient from the side-
output losses, Ag(y,¥y*; W (a,x)), and backpropagated
only from the scale-specific boundary detection loss?,
As(y,¥°; W(a,s)). Doing so, improved the performance
of the model by another 2%. We call this version as the sin-
gle scale Deep Semantic Boundary Detector (DSBD). We
believe that the improvement in performance was achiev-
able because we no longer force the side-output predictions
to be boundary detectors of their own right, but use them
as features for the fusion layer. That said, we do acknowl-
edge the importance of deep supervision for warm-starting
the training process.

Multi-scale Boundary Detection: Finally, we experi-
mented with the M-DSBD architecture that was described
in Section 4. We used three scales, S = {1,0.8,0.5},
for training and testing. The base network weights were
not updated at this stage. Only the scale-specific side out-
put weights, and the multi-scale fusion weights were up-
dated during this final training procedure. The gradients

3Please note that this experiment was done on a single scale. When we
use the term “scale-specific loss”, the gradients were backpropagated from
the loss computed using the original-sized images.



Figure 5: This figures shows some qualitative results. Row 1 shows example images, row 2 shows the respective per-pixel instance-level
masks, which is used to generate the class-agnostic boundary maps of PASCAL Boundaries shown in row 3. Row 4 shows results from
HED [30]. The last row shows the results from M-DSBD. Notice how M-DSBD is able to identify object-level boundaries and outputs far
less number of internal edges. The edge detection techniques, on the other hand, detect edges across multiple levels of hierarchies.

were backpropagated from the boundary detection loss,
Ap(y,¥; W(a,p)). Our experiments supported our hypoth-
esis that multi-scale processing would improve the task of
boundary detection by providing a further improvement of
1% on the test set of PASCAL Boundaries. Our model
and training procedure produced a final F-score of 0.652,
which is significantly more than the other baselines.

We tabulate all the numbers described above in Table 1.
‘BSDS’ is used to indicate that the model was trained on the
BSDS500 dataset. We also show some qualitative results in
Fig. 5. Notice that our boundary detector is capable of iden-
tifying the semantic boundaries confidently and detects far
less number of internal edges. On the other hand, the edge
detectors identify edges across various levels of granularity
(which they were trained to detect).

5.3. Transfer to Other Datasets

BSDS500: For completeness, we report the performance
of M-DSBD on the BSDS500 dataset. Table 2 tabulates
the results. Note that M-DSBD was trained on the PAS-

CAL Boundaries’ train set, but tested on the BSDS500’s
test set. The numbers show that our model transfers to a
different dataset while producing competitive results.

\ Method | ODS | OIS | AP |

SE-BSDS [9] 0.541 | 0.570 | 0.486

HED-BSDS [30] 0.553 | 0.585 | 0.518
HED-arch-greedy 0.598 - -

HED-PB 0.60 0.62 0.60
HED-arch+conv5_4-greedy | 0.62 - -

DSBD 0.643 | 0.663 | 0.650

M-DSBD 0.652 | 0.678 | 0.674

Table 1: This table tabulates the results on PASCAL Boundaries
test set. Note that M-DSBD clearly outperforms HED-PB.

MS-COCO: We also performed experiments on the images
from the MS-COCO dataset [21]. This dataset provides
instance-level masks for 80 foreground object categories.
Some of these categories are not present in the PASCAL
dataset. We use the M-DSBD model that was trained on
the t rain set of PASCAL Boundaries and, to enable com-
parison with [29], we test it on the first 5000 images of the
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Figure 6: Solid lines are the results form the PASCAL Boundaries
test set and the dashed lines are the results from the first 5000
images from the val set of the MS-COCO. *-BSDS curves were
obtained using models trained on BSDS500. M-DSBD curves
were obtained by training on the PASCAL Boundaries t rain set,
which outperforms HED-PB, which was obtained by training HED
on PASCAL Boundaries’ train set.

val set in MS-COCO. These experiments show the class-
agnostic transfer capabilities of our deep network since we
are testing on object categories that were unseen during
training. We also report the results of running HED on the
same test set.

The dotted lines in Fig. 6 show the precision-recall
curves, and Tab. 3 provides other numbers. Looking at
the F-score and AP, we can see that M-DSBD again out-
performs HED at the task of boundary detection ([29] do
not provide the F-score). Note that the AP values reported
in [29] are obtained by using a detector that was trained
on MS-COCO, while we are showing the transfer capabili-
ties of our class-agnostic detector that was trained on PAS-
CAL Boundaries. Moreover, the numbers reported in [29]
are a result of using multiple situational boundary detec-
tors, while ours is a monolithic detector. Finally, realize that
M-DSBD’s results (and HED’s) are underestimates because
our method detects boundaries that are not labeled in MS-
COCO (e.g. background classes), which we have shown
(on the PASCAL dataset) to constitute to about 50% of the
boundary annotations. Figure 7 shows the severity of this
problem. The ground truth boundary annotations provided
by MS-COCO (Fig. 7b) does not include the boundaries of
various other objects that are present in the image (Fig. 7a).
Also, as shown on PASCAL images, HED (Fig. 7c) detects
many internal edges while M-DSBD (Fig. 7d) is better at
restricting itself to object instance boundaries.

(b) GT Annotations

(a) Original Image

T L _ N

(c) HED[30]

(d) M-DSBD

Figure 7: (a) Shows an image from the MS-COCO dataset, (b)
shows the groundtruth boundary mask (c) shows the edge output
from HED and (d) shows the boundary output from M-DSBD. No-
tice the lack of richness in the boundary annotations of the MS-
COCO dataset.

[ Method [ ODS | OIS [ AP |
SE [9] 0.746 [ 0.767 | 0.803
HED [30] 0.782 | 0.804 | 0.833
M-DSBD-PASCAL-B | 0.751 | 0.773 | 0.789

Table 2: This table tabulates results on BSDS500 test set. The
numbers show that our model transfers reasonably to the edge de-
tection task.

[ Method [ ODS [ OIS [ AP |
Situational-CNN [29] - - 0.43
HED-BSDS [30] 041 | 042 | 031
M-DSBD-PASCAL-B | 046 | 047 | 0.38

Table 3: MS-COCO results: note that the M-DSBD (and HED)
numbers are underestimates due to the lack of boundary annota-
tions of background objects in the COCO dataset (Fig. 7).

6. Conclusion and Future Work

In this paper, we addressed the task of instance-level se-
mantic boundary detection. We built upon the PASCAL
Context [25] dataset by providing instance-level boundaries
to 459 object categories, during which we also improved the
quality of certain masks. The introduction of this dataset
is timely since the results on the BSDS500 dataset have
started to saturate. Moreover, PASCAL Boundaries has an-
notations on ~ 10k images, thereby making it 20x big-
ger than BSDS500. In addition, we developed a multi-scale
deep network based boundary detector (M-DSBD) which
achieves better performance at the task of boundary detec-
tion compared to two other well-known edge detection al-
gorithms. We tested the transfer capabilities of our model
on BSDS500 and MS-COCO datasets and showed that the
model transfers reasonably well.
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